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Abstract. Continued-fraction solutions to the matrix Riccati equation are discussed which 
are constructed by using the concept of form invariance. It is demonstrated that this 
technique is related to the A K N S  method of deriving integrable nonlinear lattice systems. 
This gives an explanation why continued-fraction solutions related to the Toda lattice were 
obtained in a previous work. 

Continued fractions corresponding to Kac-Van Moerbeke, discrete nonlinear 
Schrodinger and discrete modified K d v  lattice equations are constructed. A method for 
linearising the Kac-Van Moerbeke lattice equations is rederived and particular solutions 
are generated. Our approach demonstrates the crucial role played by the boundary 
condition at the finite end of the lattice for the existence of this method. These results are 
extended to the other two lattice systems above in the semi-infinite case and corresponding 
particular solutions generated in terms of Bessel functions. 

1. Introduction 

In a previous study (Common and Roberts 1986) continued-fraction solutions to the 
matrix Riccati equation ( MRE)  

i o (  t ) = Eo( t 1 + Go( t )zo( 1) + Z o (  t ) Fo( t ) + zo( t ) Ho( t )zo( t 1 (1.1) 

were considered, where for simplicity we take Zo, Eo,  etc, to be ( n  x n )  matrices. They 
were generated by making the sequence of substitutions, 

zk ( t = U0 + Nk + 1 ( f) - zk+ 1 ( t )I- M k +  1 ( t )  k = 0 ,  1 , 2  ,... (1.2) 

where N k ( t ) ,  M k ( f )  are ( n  x n )  matrix functions of t and U, is an ( n  x n )  constant 
matrix. The elements Nk, M k  of the resulting continued-fraction for Zo were determined 
by requiring that all the zk satisfied a MRE: 

i k  ( t )  = Ek ( t )  + Gk ( t)Zk ( t )  + zk ( t )  Fk ( t )  + zk ( t )  Hk ( f)Zk ( t) k = 0 ,  1,2 , . . .  (1.3) 

with the same standard form Gk = 0, Hk = 1. This requirement is satisfied when U, is 
proportional to the unit matrix if 

Nk ( t )  = M k t l  ( t )  - Mk( t )  (1.4a) 

h k +  1 ( t )  M ii 1 ( t )  = Nk+ 1 ( t )  - Mk+ 1 ( t )  Nk ( t M ii 1 (1.46) 

These are equations for a Toda lattice (Toda 1976) and its matrix generalisation 
(Bruschi et al 1980). 

k = 1,2, . . . . 
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In section 2 we will demonstrate that this unexpected result arises through a 
connection with the A K N S  method (Ablowitz er a1 1973, 1974) for constructing non- 
linear evolution equations solvable by the inverse scattering method. In the following 
sections, various examples of these equations will be considered by taking different 
standard forms of the M R E  in (1.1) and other forms of linear-fractional transformation 
corresponding to (1.2). 

In section 3 the scalar lattice introduced by Kac and Van Moerbeke (1975) is 
discussed and we suggest how it may be generalised to the matrix case. It will be 
shown that the relation with the continued-fraction solution of the M R E  (1.1) provides 
a method for linearising these equations. This method differs from the usual inverse 
scattering technique and is, for the scalar case, equivalent to that introduced recently 
by Yamazaki (1987). 

Our approach illustrates the important role that a boundary condition of the 
half-infinite lattice plays in the existence of the above linearisation method. We use 
it to construct special rational solutions of the Kac-Van Moerbeke (KVM)  lattice 
equations. They are related in a standard way to solutions of an half-infinite Toda 
lattice. 

Using the connection of our method with the AKNS approach, we extend our results 
to the discrete nonlinear Schrodinger equation (DNLS) in section 4 and a discrete 
modified Kdv equation (DMKdv) in section 5, both on a half-infinite interval. Here 
again a linearisation of these equations is obtained, which is different from the usual 
one, if a required boundary condition at the finite end is satisfied. Special solutions 
are constructed which are different from those given by the standard inverse scattering 
method. 

2. Continued-fractions from the linearised Riccati equation 

The MRE (1.3) is equivalent to the pair of linear equations 

x k  = GkXk + Ek Yk 

Yk=-Hkxk-FkYk k = 0 , 1 , 2 ,  . . .  
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( 2 . 3 ~ )  

(2.3d) 

Restricting the M R E  (1 .3)  to a given standardform for k = 0, 1,2,  . . . leads to relations 
between the Mk and Nk which take the form of nonlinear equations. For instance, if 
we require Gk = 0, Hk = 1 for all k = 0, 1 ,  . . . , we recover a previous result (Common 
and Roberts 1986) that Mk, N k  must be solutions of the Toda lattice equations. On 
the other hand, if we require Hk = 1, U, = 0, Go = 0, Nk = p 1 where p is a scalar 
constant then the k f k  must satisfy 

p h k +  1 ( t ,  = M k  + 1 ( t )  M k  ( t ,  - k f k  tZ ( t )  M k  + 1 ( t )  + [ M1( t )  7 M k  + 1 ( t )  1 
k = 1,2 ,  . . . . (2.4) 

We will see in section 3 that in the scalar case this set of equations are essentially 
those for the KVM lattice. 

The AKNS method may be used to generate the above evolution equations and 
many others in the scalar case. A good survey of the method has been given by 
Ablowitz (1978). It involves a pair of coupled evolution equations: 

and an eigenvalue problem: 

( 2 . 5 ~ )  

(2.5b) 

( 2 . 6 ~ )  

(2.6b) 

where the eigenvalue A is independent of t ,  k 
By choosing suitable forms for the Qk,  Rk,  S k  and Tk as functions of t and taking 

corresponding parametrisations of Ak,  Bk, c k  and Dk as functions of A, t ,  various 
nonlinear lattice equations can be obtained as consistency conditions for (2.5) and 
(2.6). For example, setting 

R k = O  T k  1 Qk - P k ( f )  s k  [ 1 - ( Y k (  t ) ]  ( 2 . 7 ~ )  

A k  - P k  B k  = P k  + ( 1  - C J ! k - , ) / A  c k  E D k  1 / A  (2.7b) 

then (2.5) and (2.6) are consistent if and only if 

f i k ( f )  = a k - l ( f ) - a k ( t )  ( 2 . 8 ~ )  

h k ( t ) a  = P k ( f )  - P k + l (  t ) *  (2.86) 

Making the substitutions k + -(+k+ l ) ,  ( Y - k  + Mk, P - k  + Nk, we see immediately that 
these consistency conditions are equivalent to those for the Toda lattice (1.4a, b).  

It is now easy to see how our approach for generating continued-fraction solutions 
to the M R E  corresponds to the AKNS method. First of all the evolution equations (2.5) 
and (2.1) are essentially of the same form. Also the eigenvalue equations (2.6a, b) can 
be solved for V l k i - 1 ,  v 2 k + l  to give linear equations which are of the same form as (2.2). 
Our equations for the elements of the continued fraction for 2, are obtained by 
requiring consistency of (2.1) with (2.2), so the connection with the AKNS method is 
complete. 
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3. The Kac-Van Moerbeke lattice 

We have seen in the previous section that, taking the M R E  (1.3) with Hk = 1 and 
additionally Go = 0, Nk = p 1, then the elements of the corresponding matrix continued 
fraction: 

z o ( t ) = [ p l - [ p l - [ p l - .  . . ] - I M 3 ] - 1 M 2 ] - ' M I  (3.1) 

is a solution of (1.1) when the Mk satisfy the relations (2.4). In the scalar case, setting 
M k ( - t )  = p*yk( t ) ,  they become 

) j k  ( f )  = yk( ) [ Y k + l (  f )  - Y k - l (  t ) l  (3.2) 

j l ( t )  = y , ( t ) y * (  t )  y k + o  as k + a  (3.3) 

k = 2 , 3 , 4  , . . . .  

These relations, with the added boundary conditions 

are the set of equations for the nonlinear lattice investigated by Kac and Van Moerbeke 
(1975). Making a similar substitution in the matrix case by setting h f k ( - f )  = p Y k ( f ) ,  
in (2.4), they become 

y k ( t ) =  Y k + l ( f ) Y k ( f ) -  Y k ( f ) Y k - l ( f ) + [ Y k ( f ) ,  Y l ( r ) l  k = 2 , 3 , .  . . . (3.4) 

Y I ( f )  = Y2( f )  YI(t)  Yk+o as k + a  (3.5) 

We suggest that these equations with the added boundary conditions 

give the matrix generalisation of the Kac-Van Moerbeke lattice. 
Recently Yamazaki (1987) proposed a method for linearising the nonlinear 

equations (3.2) and (3.3) which does not require the boundary condition yk'0 as 
k + cc used in the standard inverse scattering technique. We will now use our formulation 
to rederive Yamazaki's result and at the same time extend it to the matrix case. 

For the standard form of MRE considered in this section, it is straightforward to 
obtain Eo and Fo from (2.3) and hence show that in this case (1.1) has the form, 

i o (  t )  = MI ( t )  + Zo( t )[( 1 / P ) MY ( t )  M A  t )  MI ( 1) 

- ( l / P ) M l ( f )  + M m ~ I w  - P I ]  +Zo(t)2. (3.6) 

Consider now the matrix continued fraction 

W ( t )  = G [ p l -  Zo(-t)]-' 

= [ A I  - [AI  - [ A I . .  . ] - ' ~ ~ ( t ) ] - l y , ( t ) ] - '  (3.7) 

where A =&, the Yk satisfy (3.4) and (3.5) and a standard equivalence relation for 
continued fractions has been used with (3.1). We have the following result. 

Theorem 3.1. The matrix coefficients in the power series expansion 

obey the linear relations: 

b k (  1 )  = W k + l ( f )  - yl( f ) W k (  t )  k = 0 ,  1 ,2  , . . . .  
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ProoJ: From (3.7) 

Zo( - t ) = A * - A / W ( t ) 

and substituting into (3.6) 

W (  t )  = -A 1 +[ Y;' Y2Y1 - Yl - YylYl  + A 2 1 ]  w( t )  

459 

(3.10) 

- A  W ( t ) [  Y;'YzYI - Y ; ' Y , ] W (  t ) .  (3.11) 

We now see that the boundary condition (3.5) ensures that the term quadratic in W 
vanishes. Substituting the power series (3.8) in (3.11) then gives the linear relations 
(3.9) on equating powers of l/Az. 

Since the elements Yk(t) of the continued fraction expansion (3.7) for W ( t )  may be 
expressed in terms of the coefficients W k ( t )  of its power series expansion, as we will 
discuss below, the linear differential equations (3.9) give a linearisation of the nonlinear 
equations (3.4) and (3.5). For the scalar case this is just the result of Yamazaki (1987). 

Our method extends his result to the matrix case and also illustrates the crucial 
role of the above boundary condition. 

For the scalar case there are well known expressions for Y k ( f )  in terms of deter- 
minants with elements depending on U,(  t ) ,  0 s 1 s 2k - 1 (Jones and Thron 1980). They 
are 

yk= p k - 2 p k + l / p k - 1 p k  k = 0 , 1 , 2 ,  . . I 
with 

P o = P - , = l  

and 

where 

k = 1 , 2 , 3 ,  

(3.12) 

(3.13) 

(3.14) 

are Hankel determinants. Generalisations to the matrix case have been discussed by 
Wynn (1963). 

Yamazaki has demonstrated that the linear differential equations (3.9) may be 
further simplified by making the substitution 

wk(f )  = a ; ' ( t ) a k + l  k = l , 2 , 3  , . . . .  (3.15) 

Then (3.15) gives a solution of (3.9) when 

d k ( f )  = 6k+l( f )  k = l , 2 , 3  , . . . .  (3.16) 

This may be proved trivially in both scalar and matrix cases using the identity 

That we have linearised the KVM lattice equations is illustrated by the following 
Y , ( t )  = W l ( t ) .  

result for the scalar case. 
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Theorem 3.2. Let 8;); k = 1 , 2 , 3 , .  . . , i = 1 ,2 ,  be the two sets of solutions of (3.16) 
corresponding to boundary values y\i'(f), i = 1,2 .  Then & = S(kl)+ ai2), k = 1 , 2 , 3 , .  . . , 
is a solution of (3.16) corresponding to boundary value 

where I,( t )  = exp[Jy'," dt]. 

Proof: The Sk are obviously solutions of (3.16). Also from (3.12) with k = 1, 

since oo(t) = 1 .  The result then follows from the fact that 

= exp[ y i j )  d t  ] = I j ( t ) .  

(3.17) 

(3.18) 

(3.19) 

Starting from any given sl(t), (3.16), (3.15) and (3.12) in that order lead to a solution 
of the KVM lattice equations. A simple non-trivial case is when we choose S , ( t )  = 
D" exp(-?), n =0, 1 , 2 , .  . . ,with D = d/dt. Then 

1 exp( t2)Dk+" exp(- t 2 )  

( - 1 ) "  exp(t2)D" exp(-t2) 

(3.20) 

where we have used Roderigue's formula for Hermite polynomials Hj(t). For each 
value of n = 0, 1,2,  . . . , we then obtain rational solutions of the KVM equations. 

In their original paper Kac and Van Moerbeke (1975) showed that solutions of 
their lattice equations give solutions of the Toda lattice equations. The result may be 
stated as follows. 

Theorem 3.3. When y k (  t) ,  k = 1 , 2 , 3 ,  . . . , satisfy the KVM lattice equations (3.2) and 
(3.3), then 

M k ( f )  = Y 2 k  ( f ) y 2 k - l (  t )  

satisfy the Toda lattice equations 

Nk ( t ,  = y2k+l( t ,  + y 2 k  ( t )  k = 1,2,  . . . (3.21) 

( 3 . 2 2 ~ )  

(3.226) 

(3.23) 

The proof is by straightforward substitution. This result may be used for example 
to generate rational solutions of the Toda lattice from the corresponding solutions of 
the KVM lattice obtained from (3.20). 
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4. Discrete nonlinear Schrodinger equation 

The half-infinite DNLS equation is 

ibk(t)  = Qki-i(f)+ Qk-i(f) -2Qk(t) -IQk(t)I2[Qk+i(t)+ Qk-i(f)l 
k = 0 ,  1,2  , . . . .  (4.1) 

In the AKNS formalism, (4.1) is given by the consistency of the evolution equations: 

31 k = i[l - A 2  + Q$-I Qk] V i  k i[Qk-i/A - QkA 1 V2k ( 4 . 2 ~ )  

fi2k =i[Qf/A - Q$-lh]Vlk+i(l/h2- Qk-IQf - 1].2k (4.2b) 

with the eigenvalue equation: 

k = 0 ,  1,2, .  . . 

vi k + l  = A V l k  + QkVzk (4.3a) 
V z k + l =  QfVik+v2k/A k=0, 1,2 ,3 , .  . . . (4.3 b )  

Setting &(  t )  = V l k (  t ) /  VZk(  t )  we can generate from (4.34 b) the scalar continued- 
fraction expansion: 

which from (4.2~1, b) is a solution of the Riccati equation: 

io= i[QJA - QoA]+i[2 - A 2 -  1/A2+ QTIQo+ Q-lQ$]Zo 

+i[Q!,A - Q$/A]Z;. (4.5) 
Just as for the KVM lattice discussed in the previous section, this equation can be 
transformed into a single linear differential equation when a simple boundary condition 
is satisfied. 

Theorem 4.1. If the boundary condition Q - l ( t )  = exp(2it) holds, then W ( t )  = 
[Zo(  t )  - A  exp(2it)l-I satisfies the linear equation 

W = iQ,*/A - i exp(-2it)A - i[2 + A 2  + l / A Z  + Qo exp( -2it) - Q$ exp(2it)l W .  (4.6) 
The proof follows from substituting for Z ,  in terms of W in (4.5) and then using the 
given boundary condition. 

Using an equivalence relation for the continued fraction (4.4) for Z, and substituting 
in the definition of W we find 

y = A 2  
yF’ 1 Y F 2  - - 

1 + G ~ Y +  1 + G ~ Y + .  . . (4.7) 

The expression in brackets in (4.7) has been called a T-fraction by Jones and Thron 
(1980). It corresponds to a pair of formal power series expansions in y and in y - I ,  
i.e. given two such series 

cc n 

(4.9) 
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there exists a T-fraction: 

such that, when it is expanded in powers of y it gives L, and when it is expanded in 
powers of y-' it gives L'. The elements of the continued fraction are given by 

(4.10) 

where H',") are the Hankel determinants defined in (3.14) but with on replaced by 6 ,  
defined by 

6 n = -  P n  n = 1,2, . . . 
= t z n  n = 0 ,  -1, -2,. . . . (4.11) 

We are now ready to prove the main result of this section. 

Theorem 4.2. The DNLS equation (4.1) has the following solution for given Qo( t )  when 
the boundary condition = exp(2it) holds: 

(4.12) 

where the Hankel determinants are those defined above corresponding to the 6, and 
P k ,  f i k  are solutions of the linear equations 

P k + l =  [2+ Qo exp(-2it) - QO* exp(2 i t ) l~k  -iGk + P k - l  

FI = QZ 
and 

k =  2,3, .  . . 
(4.13) 

P Z  = 2Qo* + IQo lz  exp(-2it) - QZ2 exp(2it) - exp( -2ir) - iQ$ 

6,-I =CZk+l -[2+Q0exp(-2it)- QO* e~p(2i t ) ]$~+i; ,  k = -2, -3, . . . 
/., = exp( -2ir) = -Qo exp(-4it) (4.14) 

t z - 2 =  ~$exp(-4it)-i0~exp(-4it)-2~, e x p ( - 4 i t ) - / ~ , / ~  exp(-2it)+exp(2it). 

Proof: It is straightforward to prove by equating powers of A that W =  -L/A is a 
solution of (4.6) when (4.13) hold. Similarly W = - i / A  is a solution of (4.6) when 
(4.14) hold. From (4.8) 

n + l  

Q: = exp(-2it) n G, n = 1,2, .  . , 
m = l  

(4.15) 

and (4.12) follows on using (4.10). 

in the KVM case. 
The linear equations for the P k  and G k  may be simplified as was done for the Wk 

Corollary 4.2. 

P k  = - e x p ( - 2 i t ) ~ ~ + ~ / u ,  k = 1,2, . . . (4.16) 

f i k  = exp(-2it)~?~,_,/6-,  (4.17) k = 0, -1, -2, . . . 



Riccati equation and nonlinear lattices 463 

are solutions of (4.13) and (4.14), respectively, when 

i & k + ]  = u k  - u k + 2  

- ik1 = [ Qo exp( -2it) - 0; exp(2it)]u1 

u2 = -0; exp(+2it)u, 

k = 1,2 ,3 , .  . . (4.18a) 

(4.18 b) 

(4.1 8c) 

and 

(4.19 b) 

(4.19 c) 

Equations (4.18) and (4.19) are the final form of the linearisation of the DNLS with 
boundary condition Q-, = exp(2it). Thus, given Qo, we may use these equations to 
compute the (Tk and G k  and hence through (4.16) and (4.17) the p k  and k k .  The Qfl 
are finally obtained from (4.12). 

A simple non-trivial solution of (4.18), (4.19) in terms of Bessel functions of the 
first kind is obtained by taking 

Qo= -[1+fJo(-2it)] exp(2it). (4.20) 

Since Jo(-2it) is real for real t, we may take 

u , ( t ) = l = G _ , ( t )  (4.21) 

this choice being consistent with (4.18b) and (4.19b). Substituting in (4 .18~)  and (4 .19~)  

u2(t)= 1+4~~(-2 i t )=G- , ( t ) .  (4.22) 

Using the recurrence relation: 

in the equations (4.18a) and (4.l?a), it is easy to show that 

(4.23) 

(4.24) 

and 

where 

Ak,, = ( -l)fl+l 2n # k 

k even. k / 2 + 1  
Ak.k /2  =+(- I )  

(4.26) 

The corresponding solutions for On( t )  may be obtained in the manner outlined above 
in the form of determinants whose elements are sums of Bessel functions. 
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5. Discrete modified K d v  equation 

follows that of the previous section. Ablowitz and Ladik ( 1 9 7 6 )  have shown that this 
equation is given by the consistency of the evolution equations: 

( 5 . 2 ~ )  

(5 .2b)  

ci k = [ A  ' - Q k - 1  Q k  1 V i  k [ Q k A  + Q k -  I /  A 1 V2k  

c 2 k  = [ Q k - i A  Q k / A  1 V i k  + [ l / A  - Q k - I  Q k l  V2k  

with the eigenvalue equations: 

Y l k + l  = A v 1 k + Q k V 2 k  (5 .3u)  

V2k+ I = Q k  V l  k + V 2 k /  A (5 .3b )  

Setting &( t )  = V l k (  f ) /  4 t ) ,  we can, as previously, construct the continued fraction: 

From (5.2a, b ) ,  2, satisfies the Riccati equation: 

io = + Q - , / A  + ( A  - I /  A 2 ) ~ o  - ( Q-, A + Q ~ / A ) z Z , .  ( 5 . 5 )  

Again this can be transformed into a single linear differential equation when a simple 
boundary condition is satisfied. 

Theorem 5.1. Consider the D M K d v  lattice with boundary condition Q - l ( t )  = 1. Then 
W (  t )  = [Zo( t )  - A ] - '  satisfies the linear equation: 

W = A + Qo/ A + [A '+  1 / A 2  + 2 Q o ]  W. (5.6) 

The proof is by substituting for Zo in terms of W in ( 5 . 5 ) .  
As previously, W can be expressed in terms of a T-fraction: 

y = A 2  (5.7) F1 Y W = - l / A  - - - [ 1 ?zoy+ 1 +GI  y +  1 + G 2 y + .  . . 
where 

Fl= GI = Qo ( 5 . 8 ~ )  

Fn = Q n - 2 Q n - i ( 1 - 1 / Q t - i )  G,= Q n - i / Q n - 2 .  (5 .8b)  - 2 k - 1  From ( 5 . 7 ) ,  - w has formal power series expansions xFZl pkh2k-1 and 
and they are related to the F,, and G, through (3.14), (4.10) and ( 4 . 1 1 ) .  Thus we can 
prove a result corresponding to theorem 4.2 of the previous section. 

p k A  

Theorem 5.2. The discrete modified K d v  equation (5.1),  with the boundary condition 
Q-,(  t )  = 1 has the following solution for given Qo( f ) :  
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where the Hv) are the Hankel determinants given by (4.10) and (4.11), with p k  and 
b k  solutions of the linear equations: 

(5.10) 

and 

c k - l =  $k  - 2Qohk - c k + l  k = -2, -3, -4, . . . 
bo= 1 b-i = -Qo b-,=-Qo+2Q;-l. 

(5.1 1) 

The proof of this theorem follows that of theorem 4.2 and (5.10) and (5.11) follow 
from substituting the above power series for W in (5.6) and equating powers of A. 
Again the above equations for p k  and c k  may be simplified. 

Corollary 5.2. 

p k  =-‘k+l/ul k = 1 ,2 , .  . . 
f i k  = & k - 1 / & - 1  k=0, -1, -2,. . . 

are solutions of (5.10) and (5.11) when 

k k + 1  = u k + 2  f u k  k = 1,2, . . . 
k1 = - 2 Q 0 ~ 1  

( 5 . 1 2 ~ )  

(5.126) 

( 5 . 1 3 ~ )  

(5.13 b) 

u2 = - Qoui ( 5 . 1 3 ~ )  

and 

6 k - 1  = 6 k - 2 - k  6 k  ( 5 . 1 4 ~ )  

6-1 = -2QOG-1 (5.14b) 

6-2=-Qo&.-1. ( 5 . 1 4 ~ )  

This formulation may, as in the corresponding ones for the KVM and DNLS lattices, be 
used to generate a non-trivial solution of the DMKdv equations in terms of standard 
functions. It corresponds to taking 

Qo(t) = -Ii(2t)/Io(2t) Q-i(t) = 1 (5.15) 

where &(x)  are modified Bessel functions. Using the recurrence relation, 

(5.16) 

the system of equations (5.13) and (5.14) may be solved to give 

u k (  t )  = Ik-1(2f) = 6 - k (  f )  k = 1,2,  . . . . (5.17) 

The solutions for Q,, are then obtained in the usual way as quotients of determinants 
whose elements are those modified Bessel functions. 
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