Continued-fraction solutions to the Riccati equation and integrable lattice systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 23455
(http://iopscience.iop.org/0305-4470/23/4/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 09:58

Please note that terms and conditions apply.

Continued-fraction solutions to the Riccati equation and integrable lattice systems

A K Common and S T Hafez
Mathematical Institute, University of Kent, Canterbury, Kent CT2 7NF, UK

Received 10 October 1989

Abstract

Continued-fraction solutions to the matrix Riccati equation are discussed which are constructed by using the concept of form invariance. It is demonstrated that this technique is related to the AKns method of deriving integrable nonlinear lattice systems. This gives an explanation why continued-fraction solutions related to the Toda lattice were obtained in a previous work.

Continued fractions corresponding to Kac-Van Moerbeke, discrete nonlinear Schrödinger and discrete modified KdV lattice equations are constructed. A method for linearising the Kac-Van Moerbeke lattice equations is rederived and particular solutions are generated. Our approach demonstrates the crucial role played by the boundary condition at the finite end of the lattice for the existence of this method. These results are extended to the other two lattice systems above in the semi-infinite case and corresponding particular solutions generated in terms of Bessel functions.

1. Introduction

In a previous study (Common and Roberts 1986) continued-fraction solutions to the matrix Riccati equation (MRE)

$$
\begin{equation*}
\dot{Z}_{0}(t)=E_{0}(t)+G_{0}(t) Z_{0}(t)+Z_{0}(t) F_{0}(t)+Z_{0}(t) H_{0}(t) Z_{0}(t) \tag{1.1}
\end{equation*}
$$

were considered, where for simplicity we take Z_{0}, E_{0}, etc, to be ($n \times n$) matrices. They were generated by making the sequence of substitutions,

$$
\begin{equation*}
Z_{k}(t)=U_{0}+\left[N_{k+1}(t)-Z_{k+1}(t)\right]^{-1} M_{k+1}(t) \quad k=0,1,2, \ldots \tag{1.2}
\end{equation*}
$$

where $N_{k}(t), M_{k}(t)$ are ($n \times n$) matrix functions of t and U_{0} is an $(n \times n)$ constant matrix. The elements N_{k}, M_{k} of the resulting continued-fraction for Z_{0} were determined by requiring that all the Z_{k} satisfied a mre:
$\dot{Z}_{k}(t)=E_{k}(t)+G_{k}(t) Z_{k}(t)+Z_{k}(t) F_{k}(t)+Z_{k}(t) H_{k}(t) Z_{k}(t) \quad k=0,1,2, \ldots$
with the same standard form $G_{k} \equiv 0, H_{k} \equiv 1$. This requirement is satisfied when U_{0} is proportional to the unit matrix if
$\dot{N}_{k}(t)=M_{k+1}(t)-M_{k}(t)$
$\dot{M}_{k+1}(t) M_{k+1}^{-1}(t)=N_{k+1}(t)-M_{k+1}(t) N_{k}(t) M_{k+1}^{-1} \quad k=1,2, \ldots$.
These are equations for a Toda lattice (Toda 1976) and its matrix generalisation (Bruschi et al 1980).

In section 2 we will demonstrate that this unexpected result arises through a connection with the aKns method (Ablowitz et al 1973, 1974) for constructing nonlinear evolution equations solvable by the inverse scattering method. In the following sections, various examples of these equations will be considered by taking different standard forms of the MRE in (1.1) and other forms of linear-fractional transformation corresponding to (1.2).

In section 3 the scalar lattice introduced by Kac and Van Moerbeke (1975) is discussed and we suggest how it may be generalised to the matrix case. It will be shown that the relation with the continued-fraction solution of the mre (1.1) provides a method for linearising these equations. This method differs from the usual inverse scattering technique and is, for the scalar case, equivalent to that introduced recently by Yamazaki (1987).

Our approach illustrates the important role that a boundary condition of the half-infinite lattice plays in the existence of the above linearisation method. We use it to construct special rational solutions of the Kac-Van Moerbeke (KVM) lattice equations. They are related in a standard way to solutions of an half-infinite Toda lattice.

Using the connection of our method with the AKNS approach, we extend our results to the discrete nonlinear Schrödinger equation (DNLS) in section 4 and a discrete modified KdV equation (DMKdV) in section 5, both on a half-infinite interval. Here again a linearisation of these equations is obtained, which is different from the usual one, if a required boundary condition at the finite end is satisfied. Special solutions are constructed which are different from those given by the standard inverse scattering method.

2. Continued-fractions from the linearised Riccati equation

The mre (1.3) is equivalent to the pair of linear equations

$$
\begin{align*}
\dot{X}_{k} & =G_{k} X_{k}+E_{k} Y_{k} \\
\dot{Y}_{k} & =-H_{k} X_{k}-F_{k} Y_{k} \quad k=0,1,2, \ldots \tag{2.1}
\end{align*}
$$

when $Z_{k}=X_{k} Y_{k}^{-1}$, whilst the linear fractional transformation (1.2) with $U_{0}=\lambda 1$ is equivalent to

$$
\left.\begin{array}{rl}
X_{k+1} & =N_{k+1} X_{k}-\left[M_{k+1}+\lambda N_{k+1}\right] Y_{k} \tag{2.2}\\
Y_{k+1} & =X_{k}-\lambda Y_{k}
\end{array}\right\} \quad k=0,1,2, \ldots
$$

Differentiating (2.2) and using (2.1), we find X_{k+1}, Y_{k+1} satisfy (2.1) with $k \rightarrow k+1$ when

$$
\begin{align*}
G_{k+1}=\dot{M}_{k+1} & M_{k+1}^{-1}-\lambda N_{k+1} G_{k} M_{k+1}^{-1}-\lambda M_{k+1} H_{k} M_{k+1}^{-1} \\
& -\lambda^{2} N_{k+1} H_{k} M_{k+1}^{-1}-N_{k+1} E_{k} M_{k+1}^{-1} \\
& -M_{k+1} F_{k} M_{k+1}^{-1}-\lambda N_{k+1} F_{k} M_{k+1}^{-1} \tag{2.3a}\\
E_{k+1}=\dot{N}_{k+1}+ & N_{k+1} G_{k}+M_{k+1} H_{k}+\lambda N_{k+1} H_{k} \\
& +\lambda N_{k+1} G_{k} M_{k+1}^{-1} N_{k+1}-\dot{M}_{k+1} M_{k+1}^{-1} N_{k+1}+\lambda M_{k+1} H_{k} M_{k+1}^{-1} N_{k+1} \\
& +\lambda^{2} N_{k+1} H_{k} M_{k+1}^{-1} N_{k+1}+N_{k+1} E_{k} M_{k+1}^{-1} N_{k+1}+M_{k+1} F_{k} M_{k+1}^{-1} N_{k+1} \\
& +\lambda N_{k+1} F_{k} M_{k+1}^{-1} N_{k+1} \tag{2.3b}
\end{align*}
$$

$$
\begin{gather*}
H_{k+1}=E_{k} M_{k+1}^{-1}+\lambda G_{k} M_{k+1}^{-1}+\lambda^{2} H_{k} M_{k+1}^{-1}+\lambda F_{k} M_{k+1}^{-1} \tag{2.3c}\\
F_{k+1}=-G_{k}-E_{k} M_{k+1}^{-1} N_{k+1}-\lambda H_{k}-\lambda G_{k} M_{k+1}^{-1} N_{k+1} \\
-\lambda^{2} H_{k} M_{k+1}^{-1} N_{k+1}-\lambda F_{k} M_{k+1}^{-1} N_{k+1} . \tag{2.3d}
\end{gather*}
$$

Restricting the MRE (1.3) to a given standard form for $k=0,1,2, \ldots$ leads to relations between the M_{k} and N_{k} which take the form of nonlinear equations. For instance, if we require $G_{k} \equiv 0, H_{k} \equiv 1$ for all $k=0,1, \ldots$, we recover a previous result (Common and Roberts 1986) that M_{k}, N_{k} must be solutions of the Toda lattice equations. On the other hand, if we require $H_{k} \equiv 1, U_{0}=0, G_{0}=0, N_{k}=\mu 1$ where μ is a scalar constant then the M_{k} must satisfy

$$
\begin{gather*}
\mu \dot{M}_{k+1}(t)=M_{k+1}(t) M_{k}(t)-M_{k+2}(t) M_{k+1}(t)+\left[M_{1}(t), M_{k+1}(t)\right] \\
k=1,2, \ldots \tag{2.4}
\end{gather*}
$$

We will see in section 3 that in the scalar case this set of equations are essentially those for the кvm lattice.

The akns method may be used to generate the above evolution equations and many others in the scalar case. A good survey of the method has been given by Ablowitz (1978). It involves a pair of coupled evolution equations:

$$
\begin{align*}
& \dot{\nu}_{1 k}(t)=A_{k} \nu_{1 k}(t)+B_{k} \nu_{2 k}(t) \tag{2.5a}\\
& \dot{\nu}_{2 k}(t)=C_{k} \nu_{1 k}(t)+D_{k} \nu_{2 k}(t) \tag{2.5b}
\end{align*}
$$

and an eigenvalue problem:

$$
\begin{align*}
& \nu_{1 k+1}(t)=\lambda \nu_{1 k}+Q_{k} \nu_{2 k}+S_{k} \nu_{2 k+1} \tag{2.6a}\\
& \nu_{2 k+1}(t)=(1 / \lambda) \nu_{2 k}+R_{k} \nu_{1 k}+T_{k} \nu_{1 k+1} \tag{2.6b}
\end{align*}
$$

where the eigenvalue λ is independent of t, k.
By choosing suitable forms for the Q_{k}, R_{k}, S_{k} and T_{k} as functions of t and taking corresponding parametrisations of A_{k}, B_{k}, C_{k} and D_{k} as functions of λ, t, various nonlinear lattice equations can be obtained as consistency conditions for (2.5) and (2.6). For example, setting

$$
\begin{array}{lrcc}
R_{k} \equiv 0 & T_{k} \equiv 1 & Q_{k} \equiv-\beta_{k}(t) & S_{k} \equiv\left[1-\alpha_{k}(t)\right] \\
A_{k} \equiv \lambda-\beta_{k} & B_{k} \equiv \beta_{k}+\left(1-\alpha_{k-1}\right) / \lambda & C_{k} \equiv \lambda & D_{k} \equiv 1 / \lambda \tag{2.7b}
\end{array}
$$

then (2.5) and (2.6) are consistent if and only if

$$
\begin{align*}
& \dot{\beta}_{k}(t)=\alpha_{k-1}(t)-\alpha_{k}(t) \tag{2.8a}\\
& \dot{\alpha}_{k}(t) \alpha_{k}^{-1}(t)=\beta_{k}(t)-\beta_{k+1}(t) . \tag{2.8b}
\end{align*}
$$

Making the substitutions $k \rightarrow-(+k+1), \alpha_{-k} \rightarrow M_{k}, \beta_{-k} \rightarrow N_{k}$, we see immediately that these consistency conditions are equivalent to those for the Toda lattice (1.4a, b).

It is now easy to see how our approach for generating continued-fraction solutions to the MRE corresponds to the akns method. First of all the evolution equations (2.5) and (2.1) are essentially of the same form. Also the eigenvalue equations ($2.6 a, b$) can be solved for $\nu_{1 k+1}, \nu_{2 k+1}$ to give linear equations which are of the same form as (2.2). Our equations for the elements of the continued fraction for Z_{0} are obtained by requiring consistency of (2.1) with (2.2), so the connection with the AKNS method is complete.

3. The Kac-Van Moerbeke lattice

We have seen in the previous section that, taking the mre (1.3) with $H_{k} \equiv 1$ and additionally $G_{0} \equiv 0, N_{k}=\mu 1$, then the elements of the corresponding matrix continued fraction:

$$
\begin{equation*}
Z_{0}(t)=\left[\mu 1-\left[\mu 1-[\mu 1-\ldots]^{-1} M_{3}\right]^{-1} M_{2}\right]^{-1} M_{1} \tag{3.1}
\end{equation*}
$$

is a solution of (1.1) when the M_{k} satisfy the relations (2.4). In the scalar case, setting $M_{k}(-t)=\mu y_{k}(t)$, they become

$$
\begin{equation*}
\dot{y}_{k}(t)=y_{k}(t)\left[y_{k+1}(t)-y_{k-1}(t)\right] \quad k=2,3,4, \ldots \tag{3.2}
\end{equation*}
$$

These relations, with the added boundary conditions

$$
\begin{equation*}
\dot{y}_{1}(t)=y_{1}(t) y_{2}(t) \quad y_{k} \rightarrow 0 \text { as } k \rightarrow \infty \tag{3.3}
\end{equation*}
$$

are the set of equations for the nonlinear lattice investigated by Kac and Van Moerbeke (1975). Making a similar substitution in the matrix case by setting $M_{k}(-t)=\mu Y_{k}(t)$, in (2.4), they become

$$
\begin{equation*}
\dot{Y}_{k}(t)=Y_{k+1}(t) Y_{k}(t)-Y_{k}(t) Y_{k-1}(t)+\left[Y_{k}(t), Y_{1}(t)\right] \quad k=2,3, \ldots \tag{3.4}
\end{equation*}
$$

We suggest that these equations with the added boundary conditions

$$
\begin{equation*}
\dot{Y}_{1}(t)=Y_{2}(t) Y_{1}(t) \quad Y_{k} \rightarrow 0 \text { as } k \rightarrow \infty \tag{3.5}
\end{equation*}
$$

give the matrix generalisation of the Kac-Van Moerbeke lattice.
Recently Yamazaki (1987) proposed a method for linearising the nonlinear equations (3.2) and (3.3) which does not require the boundary condition $y_{k} \rightarrow 0$ as $k \rightarrow \infty$ used in the standard inverse scattering technique. We will now use our formulation to rederive Yamazaki's result and at the same time extend it to the matrix case.

For the standard form of MRE considered in this section, it is straightforward to obtain E_{0} and F_{0} from (2.3) and hence show that in this case (1.1) has the form,

$$
\begin{align*}
\dot{Z}_{0}(t)=M_{1}(t) & +Z_{0}(t)\left[(1 / \mu) M_{1}^{-1}(t) M_{2}(t) M_{1}(t)\right. \\
& \left.-(1 / \mu) M_{1}(t)+M_{1}^{-1}(t) \dot{M}_{1}(t)-\mu 1\right]+Z_{0}(t)^{2} \tag{3.6}
\end{align*}
$$

Consider now the matrix continued fraction

$$
\begin{align*}
W(t) & =\sqrt{\mu}\left[\mu 1-Z_{0}(-t)\right]^{-1} \\
& =\left[\lambda 1-\left[\lambda 1-[\lambda 1 \ldots]^{-1} Y_{2}(t)\right]^{-1} Y_{1}(t)\right]^{-1} \tag{3.7}
\end{align*}
$$

where $\lambda=\sqrt{\mu}$, the Y_{k} satisfy (3.4) and (3.5) and a standard equivalence relation for continued fractions has been used with (3.1). We have the following result.

Theorem 3.1. The matrix coefficients in the power series expansion

$$
\begin{equation*}
W(t)=\sum_{k=0}^{\infty} \omega_{k}(t) / \lambda^{2 k+1} \quad \omega_{0}(t)=1 \tag{3.8}
\end{equation*}
$$

obey the linear relations:

$$
\begin{equation*}
\dot{\omega}_{k}(t)=\omega_{k+1}(t)-Y_{1}(t) \omega_{k}(t) \quad k=0,1,2, \ldots \tag{3.9}
\end{equation*}
$$

Proof. From (3.7)

$$
\begin{equation*}
Z_{0}(-t)=\lambda^{2}-\lambda / W(t) \tag{3.10}
\end{equation*}
$$

and substituting into (3.6)

$$
\begin{align*}
\dot{W}(t)=-\lambda 1+ & {\left[Y_{1}^{-1} Y_{2} Y_{1}-Y_{1}-Y_{1}^{-1} \dot{Y}_{1}+\lambda^{2} 1\right] W(t) } \\
& -\lambda W(t)\left[Y_{1}^{-1} Y_{2} Y_{1}-Y_{1}^{-1} \dot{Y}_{1}\right] W(t) \tag{3.11}
\end{align*}
$$

We now see that the boundary condition (3.5) ensures that the term quadratic in W vanishes. Substituting the power series (3.8) in (3.11) then gives the linear relations (3.9) on equating powers of $1 / \lambda^{2}$.

Since the elements $Y_{k}(t)$ of the continued fraction expansion (3.7) for $W(t)$ may be expressed in terms of the coefficients $\omega_{k}(t)$ of its power series expansion, as we will discuss below, the linear differential equations (3.9) give a linearisation of the nonlinear equations (3.4) and (3.5). For the scalar case this is just the result of Yamazaki (1987).

Our method extends his result to the matrix case and also illustrates the crucial role of the above boundary condition.

For the scalar case there are well known expressions for $Y_{k}(t)$ in terms of determinants with elements depending on $\omega_{l}(t), 0 \leqslant l \leqslant 2 k-1$ (Jones and Thron 1980). They are

$$
\begin{equation*}
Y_{k}=P_{k-2} P_{k+1} / P_{k-1} P_{k} \quad k=0,1,2, \ldots \tag{3.12}
\end{equation*}
$$

with

$$
P_{0}=P_{-1}=1
$$

and

$$
\begin{equation*}
P_{2 k-1}=H_{k}^{(0)} \quad P_{2 k}=H_{k}^{(1)} \quad k=1,2,3, \ldots \tag{3.13}
\end{equation*}
$$

where

$$
H_{m}^{(n)}=\left|\begin{array}{ccc}
\omega_{n} & \ldots & \omega_{n+m-1} \tag{3.14}\\
\vdots & \ldots & \vdots \\
\omega_{n+m-1} & \ldots & \omega_{n+2 m-2}
\end{array}\right|
$$

are Hankel determinants. Generalisations to the matrix case have been discussed by Wynn (1963).

Yamazaki has demonstrated that the linear differential equations (3.9) may be further simplified by making the substitution

$$
\begin{equation*}
\omega_{k}(t)=\delta_{1}^{-1}(t) \delta_{k+1} \quad k=1,2,3, \ldots \tag{3.15}
\end{equation*}
$$

Then (3.15) gives a solution of (3.9) when

$$
\begin{equation*}
\dot{\delta}_{k}(t)=\delta_{k+1}(t) \quad k=1,2,3, \ldots \tag{3.16}
\end{equation*}
$$

This may be proved trivially in both scalar and matrix cases using the identity $Y_{1}(t)=\omega_{1}(t)$.

That we have linearised the Kvm lattice equations is illustrated by the following result for the scalar case.

Theorem 3.2. Let $\delta_{k}^{(i)} ; k=1,2,3, \ldots, i=1,2$, be the two sets of solutions of (3.16) corresponding to boundary values $y_{1}^{(i)}(t), i=1,2$. Then $\delta_{k}=\delta_{k}^{(1)}+\delta_{k}^{(2)}, k=1,2,3, \ldots$, is a solution of (3.16) corresponding to boundary value

$$
\begin{equation*}
y_{1}(t)=\left[y_{1}^{(1)}(t) I_{1}(t)+y_{1}^{(2)}(t) I_{2}(t)\right] /\left[I_{1}(t)+I_{2}(t)\right] \tag{3.17}
\end{equation*}
$$

where $I_{j}(t)=\exp \left[\int y_{1}^{(i)} \mathrm{d} t\right]$.
Proof. The δ_{k} are obviously solutions of (3.16). Also from (3.12) with $k=1$,

$$
\begin{equation*}
y_{1}=\frac{\omega_{1}}{\omega_{0}}=\frac{\dot{\delta}_{1}}{\delta_{1}}=\frac{\dot{\delta}_{1}^{(1)}+\dot{\delta}_{1}^{(2)}}{\delta_{1}^{(1)}+\delta_{1}^{(2)}} \tag{3.18}
\end{equation*}
$$

since $\omega_{0}(t)=1$. The result then follows from the fact that

$$
\begin{equation*}
\delta_{1}^{(j)}=\exp \left[\int y_{1}^{(j)} \mathrm{d} t\right]=I_{j}(t) \tag{3.19}
\end{equation*}
$$

Starting from any given $\delta_{1}(t),(3.16),(3.15)$ and (3.12) in that order lead to a solution of the KVM lattice equations. A simple non-trivial case is when we choose $\delta_{1}(t)=$ $D^{n} \exp \left(-t^{2}\right), n=0,1,2, \ldots$, with $D=\mathrm{d} / \mathrm{d} t$. Then

$$
\begin{align*}
\omega_{k}(t) & =(-1)^{k}\left[\frac{(-1)^{k+n} \exp \left(t^{2}\right) D^{k+n} \exp \left(-t^{2}\right)}{(-1)^{n} \exp \left(t^{2}\right) D^{n} \exp \left(-t^{2}\right)}\right] \\
& =(-1)^{k} \frac{H_{k+n}(t)}{H_{n}(t)} \quad k, n=0,1, \ldots \tag{3.20}
\end{align*}
$$

where we have used Roderigue's formula for Hermite polynomials $H_{j}(t)$. For each value of $n=0,1,2, \ldots$, we then obtain rational solutions of the кум equations.

In their original paper Kac and Van Moerbeke (1975) showed that solutions of their lattice equations give solutions of the Toda lattice equations. The result may be stated as follows.

Theorem 3.3. When $y_{k}(t), k=1,2,3, \ldots$, satisfy the kvm lattice equations (3.2) and (3.3), then

$$
\begin{equation*}
M_{k}(t)=y_{2 k}(t) y_{2 k-1}(t) \quad N_{k}(t)=y_{2 k+1}(t)+y_{2 k}(t) \quad k=1,2, \ldots \tag{3.21}
\end{equation*}
$$

satisfy the Toda lattice equations

$$
\begin{align*}
& \dot{N}_{k}(t)=M_{k+1}(t)-M_{k}(t) \tag{3.22a}\\
& \dot{M}_{k+1}(t) M_{k+1}^{-1}(t)=N_{k+1}(t)-N_{k}(t) \tag{3.22b}
\end{align*}
$$

for $k=1,2, \ldots$, and also the boundary condition

$$
\begin{equation*}
N_{1}(t)=\dot{M}_{1}(t) M_{1}^{-1}(t)+\int M_{1} \mathrm{~d} t \tag{3.23}
\end{equation*}
$$

The proof is by straightforward substitution. This result may be used for example to generate rational solutions of the Toda lattice from the corresponding solutions of the KVm lattice obtained from (3.20).

4. Discrete nonlinear Schrödinger equation

The half-infinite DNLS equation is

$$
\begin{gather*}
\mathrm{i} \dot{Q}_{k}(t)=Q_{k+1}(t)+Q_{k-1}(t)-2 Q_{k}(t)-\left|Q_{k}(t)\right|^{2}\left[Q_{k+1}(t)+Q_{k-1}(t)\right] \\
k=0,1,2, \ldots \tag{4.1}
\end{gather*}
$$

In the aKNS formalism, (4.1) is given by the consistency of the evolution equations:
$\dot{\nu}_{1 k}=\mathrm{i}\left[1-\lambda^{2}+Q_{k-1}^{*} Q_{k}\right] \nu_{1 k}+\mathrm{i}\left[Q_{k-1} / \lambda-Q_{k} \lambda\right] \nu_{2 k}$
$\dot{\nu}_{2 k}=\mathrm{i}\left[Q_{k}^{*} / \lambda-Q_{k-1}^{*} \lambda\right] \nu_{1 k}+\mathrm{i}\left(1 / \lambda^{2}-Q_{k-1} Q_{k}^{*}-1\right] \nu_{2 k} \quad k=0,1,2, \ldots$
with the eigenvalue equation:

$$
\begin{align*}
& \nu_{1 k+1}=\lambda \nu_{1 k}+Q_{k} \nu_{2 k} \tag{4.3a}\\
& \nu_{2 k+1}=Q_{k}^{*} \nu_{1 k}+\nu_{2 k} / \lambda \quad k=0,1,2,3, \ldots \tag{4.3b}
\end{align*}
$$

Setting $Z_{k}(t)=\nu_{1 k}(t) / \nu_{2 k}(t)$ we can generate from (4.3a,b) the scalar continuedfraction expansion:

$$
\begin{equation*}
Z_{0}=-\frac{1}{\left(Q_{0}^{*} \lambda\right)}-\frac{Q_{0} / Q_{0}^{*}-1 / Q_{0}^{* 2}}{\lambda / Q_{0}^{*}+1 /\left(Q_{1}^{*} \lambda\right)}+\frac{Q_{1} / Q_{1}^{*}-1 / Q_{1}^{* 2}}{\lambda / Q_{1}^{*}+1 /\left(Q_{2}^{*} \lambda\right)}+\ldots \tag{4.4}
\end{equation*}
$$

which from ($4.2 a, b$) is a solution of the Riccati equation:

$$
\begin{align*}
\dot{Z}_{0}=\mathrm{i}\left[Q_{-1} / \lambda-\right. & \left.Q_{0} \lambda\right]+\mathrm{i}\left[2-\lambda^{2}-1 / \lambda^{2}+Q_{-1}^{*} Q_{0}+Q_{-1} Q_{0}^{*}\right] Z_{0} \\
& +\mathrm{i}\left[Q_{-1}^{*} \lambda-Q_{0}^{*} / \lambda\right] Z_{0}^{2} \tag{4.5}
\end{align*}
$$

Just as for the кvm lattice discussed in the previous section, this equation can be transformed into a single linear differential equation when a simple boundary condition is satisfied.

Theorem 4.1. If the boundary condition $Q_{-1}(t)=\exp (2 \mathrm{i} t)$ holds, then $W(t) \equiv$ $\left[Z_{0}(t)-\lambda \exp (2 \mathrm{it})\right]^{-1}$ satisfies the linear equation

$$
\begin{equation*}
\dot{W}=\mathrm{i} Q_{0}^{*} / \lambda-\mathrm{i} \exp (-2 \mathrm{i} t) \lambda-\mathrm{i}\left[2+\lambda^{2}+1 / \lambda^{2}+Q_{0} \exp (-2 \mathrm{i} t)-Q_{0}^{*} \exp (2 \mathrm{i} t)\right] W . \tag{4.6}
\end{equation*}
$$

The proof follows from substituting for Z_{0} in terms of W in (4.5) and then using the given boundary condition.

Using an equivalence relation for the continued fraction (4.4) for Z_{0} and substituting in the definition of W we find

$$
\begin{equation*}
W=\frac{1}{\lambda}\left[\frac{\gamma F_{1}}{1+G_{1} \gamma}+\frac{\gamma F_{2}}{1+G_{2} \gamma}+\frac{\gamma F_{3}}{1+G_{3} \gamma}+\ldots\right] \quad \gamma=\lambda^{2} \tag{4.7}
\end{equation*}
$$

with

$$
\begin{align*}
& F_{1} \equiv Q_{0}^{*} \quad G_{1} \equiv \exp (2 \mathrm{i} t) Q_{0}^{*} \\
& F_{n} \equiv Q_{n-1}^{*}\left(Q_{n-2}-1 / Q_{n-2}^{*}\right) \quad G_{n}=Q_{n-1}^{*} / Q_{n-2}^{*} \quad n=2,3,4, \ldots \tag{4.8}
\end{align*}
$$

The expression in brackets in (4.7) has been called a T-fraction by Jones and Thron (1980). It corresponds to a pair of formal power series expansions in γ and in γ^{-1}, i.e. given two such series

$$
\begin{equation*}
L=\sum_{k=1}^{\infty} \mu_{k} \gamma^{k} \quad \tilde{L}=\sum_{k=-\infty}^{0} \tilde{\mu}_{k} \gamma^{k} \tag{4.9}
\end{equation*}
$$

there exists a T-fraction:

$$
\frac{F_{1} \gamma}{1+G_{1} \gamma}+\frac{F_{2} \gamma}{1+G_{2} \gamma}+\frac{F_{3} \gamma}{1+G_{3} \gamma+\ldots}
$$

such that, when it is expanded in powers of γ it gives L, and when it is expanded in powers of γ^{-1} it gives \tilde{L}. The elements of the continued fraction are given by

$$
\begin{equation*}
F_{n}=-\frac{H_{n-2}^{(-n+3)} H_{n}^{(-n+2)}}{H_{n-1}^{(-n+2)} H_{n-1}^{(-n+3)}} \quad G_{n}=-\frac{H_{n-1}^{(-n+1)} H_{n}^{(-n+2)}}{H_{n}^{(-n+1)} H_{n-1}^{(-n+3)}} \tag{4.10}
\end{equation*}
$$

where $H_{m}^{(n)}$ are the Hankel determinants defined in (3.14) but with ω_{n} replaced by δ_{n} defined by

$$
\begin{align*}
\delta_{n} & =-\mu_{n} & & n=1,2, \ldots \\
& =\tilde{\mu}_{n} & & n=0,-1,-2, \ldots . \tag{4.11}
\end{align*}
$$

We are now ready to prove the main result of this section.
Theorem 4.2. The dnLs equation (4.1) has the following solution for given $Q_{0}(t)$ when the boundary condition $Q_{-1}(t)=\exp (2 \mathrm{i} t)$ holds:

$$
\begin{equation*}
Q_{n}(t)=(-1)^{n+1} \exp (2 \mathrm{i} t)\left[\frac{H_{n+1}^{(-n+1)}}{H_{n+1}^{(-n)}}\right]^{*} \quad n=1,2, \ldots \tag{4.12}
\end{equation*}
$$

where the Hankel determinants are those defined above corresponding to the δ_{n} and $\mu_{k}, \bar{\mu}_{k}$ are solutions of the linear equations
$\mu_{k+1}=\left[2+Q_{0} \exp (-2 \mathrm{i} t)-Q_{0}^{*} \exp (2 \mathrm{i} t)\right] \mu_{k}-\mathrm{i} \mu_{k}+\mu_{k-1} \quad k=2,3, \ldots$
$\mu_{1}=Q_{0}^{*} \quad \mu_{2}=2 Q_{0}^{*}+\left|Q_{0}\right|^{2} \exp (-2 \mathrm{i} t)-Q_{0}^{* 2} \exp (2 \mathrm{i} t)-\exp (-2 \mathrm{i} t)-\mathrm{i} \dot{Q}_{0}^{*}$
and
$\tilde{\mu}_{k-1}=\tilde{\mu}_{k+1}-\left[2+Q_{0} \exp (-2 \mathrm{i} t)-Q_{0}^{*} \exp (2 \mathrm{i} t)\right] \tilde{\mu}_{k}+\mathrm{i} \tilde{\mu}_{k} \quad k=-2,-3, \ldots$
$\tilde{\mu}_{0}=\exp (-2 \mathrm{i} t) \quad \tilde{\mu}_{-1}=-Q_{0} \exp (-4 \mathrm{i} t)$
$\tilde{\mu}_{-2}=Q_{0}^{2} \exp (-4 \mathrm{i} t)-\mathrm{i} \dot{Q}_{0} \exp (-4 \mathrm{i} t)-2 Q_{0} \exp (-4 \mathrm{i} t)-\left|Q_{0}\right|^{2} \exp (-2 \mathrm{i} t)+\exp (2 \mathrm{i} t)$.
Proof. It is straightforward to prove by equating powers of λ that $W=-L / \lambda$ is a solution of (4.6) when (4.13) hold. Similarly $W=-\tilde{L} / \lambda$ is a solution of (4.6) when (4.14) hold. From (4.8)

$$
\begin{equation*}
Q_{n}^{*}=\exp (-2 \mathbf{i} t) \prod_{m=1}^{n+1} G_{m} \quad n=1,2, \ldots \tag{4.15}
\end{equation*}
$$

and (4.12) follows on using (4.10).
The linear equations for the μ_{k} and $\tilde{\mu}_{k}$ may be simplified as was done for the ω_{k} in the кvm case.

Corollary 4.2.

$$
\begin{array}{ll}
\mu_{k}=-\exp (-2 \mathbf{i} t) \sigma_{k+1} / \sigma_{1} & k=1,2, \ldots \\
\tilde{\mu}_{k}=\exp (-2 \mathrm{i} t) \tilde{\sigma}_{k-1} / \tilde{\sigma}_{-1} & k=0,-1,-2, \ldots \tag{4.17}
\end{array}
$$

are solutions of (4.13) and (4.14), respectively, when

$$
\begin{align*}
& \mathrm{i} \dot{\sigma}_{k+1}=\sigma_{k}-\sigma_{k+2} \quad k=1,2,3, \ldots \tag{4.18a}\\
& -\mathrm{i} \dot{\sigma}_{1}=\left[Q_{0} \exp (-2 \mathrm{i} t)-Q_{0}^{*} \exp (2 \mathrm{i} t)\right] \sigma_{1} \tag{4.18b}\\
& \sigma_{2}=-Q_{0}^{*} \exp (+2 \mathrm{i} t) \sigma_{1} \tag{4.18c}
\end{align*}
$$

and

$$
\begin{align*}
& \mathrm{i} \tilde{\sigma}_{k-1}=\tilde{\sigma}_{k-2}-\tilde{\sigma}_{k} \quad k=-1,-2,-3, \ldots \tag{4.19a}\\
& -\mathrm{i} \hat{\sigma}_{-1}=\left[Q_{0} \exp (-2 \mathrm{i} t)-Q_{0}^{*} \exp (2 \mathrm{i} t)\right] \tilde{\sigma}_{-1} \tag{4.19b}\\
& \tilde{\sigma}_{-2}=-Q_{0} \exp (-2 \mathrm{i} t) \tilde{\sigma}_{-1} . \tag{4.19c}
\end{align*}
$$

Equations (4.18) and (4.19) are the final form of the linearisation of the DNLS with boundary condition $Q_{-1}=\exp (2 \mathrm{i} t)$. Thus, given Q_{0}, we may use these equations to compute the σ_{k} and $\tilde{\sigma}_{k}$ and hence through (4.16) and (4.17) the μ_{k} and $\tilde{\mu}_{k}$. The Q_{n} are finally obtained from (4.12).

A simple non-trivial solution of (4.18), (4.19) in terms of Bessel functions of the first kind is obtained by taking

$$
\begin{equation*}
Q_{0}=-\left[1+\frac{1}{2} J_{0}(-2 \mathrm{i} t)\right] \exp (2 \mathrm{i} t) . \tag{4.20}
\end{equation*}
$$

Since $J_{0}(-2 \mathrm{i} t)$ is real for real t, we may take

$$
\begin{equation*}
\sigma_{1}(t)=1=\tilde{\sigma}_{-1}(t) \tag{4.21}
\end{equation*}
$$

this choice being consistent with (4.18b) and (4.19b). Substituting in (4.18c) and (4.19c)

$$
\begin{equation*}
\sigma_{2}(t)=1+\frac{1}{2} J_{0}(-2 \mathrm{i} t)=\tilde{\sigma}_{-2}(t) \tag{4.22}
\end{equation*}
$$

Using the recurrence relation:

$$
\begin{equation*}
J_{k-1}(x)-J_{k+1}(x)=2 \frac{\mathrm{~d} J_{k}(x)}{\mathrm{d} x} \tag{4.23}
\end{equation*}
$$

in the equations (4.18a) and (4.19a), it is easy to show that

$$
\begin{equation*}
\sigma_{k}(t)=1+\sum_{n=1}^{[k / 2]} A_{k, n} J_{k-2 n}(-2 \mathrm{i} t) \quad k=2,3, \ldots \tag{4.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\sigma}_{-k}(t)=1+(-1)^{k} \sum_{n=1}^{[k / 2]} A_{k, n} J_{k-2 n}(-2 \mathrm{i} t) \quad k=2,3, \ldots \tag{4.25}
\end{equation*}
$$

where

$$
\begin{array}{lr}
A_{k, n}=(-1)^{n+1} & 2 n \neq k \\
A_{k, k / 2}=\frac{1}{2}(-1)^{k / 2+1} & k \text { even } . \tag{4.26}
\end{array}
$$

The corresponding solutions for $Q_{n}(t)$ may be obtained in the manner outlined above in the form of determinants whose elements are sums of Bessel functions.

5. Discrete modified KdV equation

Our discussion of the DMKdV

$$
\begin{equation*}
\dot{Q}_{k}(t)=\left[1-Q_{k}^{2}(t)\right]\left[Q_{k+1}(t)-Q_{k-1}(t)\right] \tag{5.1}
\end{equation*}
$$

follows that of the previous section. Ablowitz and Ladik (1976) have shown that this equation is given by the consistency of the evolution equations:

$$
\begin{align*}
& \dot{\nu}_{1 k}=\left[\lambda^{2}-Q_{k-1} Q_{k}\right] \nu_{1 k}+\left[Q_{k} \lambda+Q_{k-1} / \lambda\right] \nu_{2 k} \tag{5.2a}\\
& \dot{\nu}_{2 k}=\left[Q_{k-1} \lambda+Q_{k} / \lambda\right] \nu_{1 k}+\left[1 / \lambda^{2}-Q_{k-1} Q_{k}\right] \nu_{2 k} \tag{5.2b}
\end{align*}
$$

with the eigenvalue equations:

$$
\begin{align*}
& \nu_{1 k+1}=\lambda \nu_{1 k}+Q_{k} \nu_{2 k} \tag{5.3a}\\
& \nu_{2 k+1}=Q_{k} \nu_{1 k}+\nu_{2 k} / \lambda . \tag{5.3b}
\end{align*}
$$

Setting $Z_{k}(t) \equiv \nu_{1 k}(t) / \nu_{2 k}(t)$, we can, as previously, construct the continued fraction:

$$
\begin{equation*}
Z_{0}(t)=-\frac{1}{\lambda Q_{0}}-\frac{\left(1-1 / Q_{0}^{2}\right)}{\lambda / Q_{0}+1 /\left(\lambda Q_{1}\right)}+\frac{\left(1-1 / Q_{1}^{2}\right)}{\lambda / Q_{1}+1 /\left(\lambda Q_{2}\right)}+\frac{\left(1-1 / Q_{2}^{2}\right)}{\lambda / Q_{2}+1 /\left(\lambda Q_{3}\right)}+\ldots . \tag{5.4}
\end{equation*}
$$

From ($5.2 a, b$), Z_{0} satisfies the Riccati equation:

$$
\begin{equation*}
\dot{Z}_{0}=\lambda Q_{0}+Q_{-1} / \lambda+\left(\lambda^{2}-1 / \lambda^{2}\right) Z_{0}-\left(Q_{-1} \lambda+Q_{0} / \lambda\right) Z_{0}^{2} \tag{5.5}
\end{equation*}
$$

Again this can be transformed into a single linear differential equation when a simple boundary condition is satisfied.

Theorem 5.1. Consider the DMKdV lattice with boundary condition $Q_{-1}(t)=1$. Then $W(t) \equiv\left[Z_{0}(t)-\lambda\right]^{-1}$ satisfies the linear equation:

$$
\begin{equation*}
\dot{W}=\lambda+Q_{0} / \lambda+\left[\lambda^{2}+1 / \lambda^{2}+2 Q_{0}\right] W . \tag{5.6}
\end{equation*}
$$

The proof is by substituting for Z_{0} in terms of W in (5.5).
As previously, W can be expressed in terms of a T-fraction:

$$
\begin{equation*}
W=-1 / \lambda\left[\frac{F_{0} \gamma}{1+G_{0} \gamma}+\frac{F_{1} \gamma}{1+G_{1} \gamma}+\frac{F_{2} \gamma}{1+G_{2} \gamma}+\ldots\right] \quad \gamma=\lambda^{2} \tag{5.7}
\end{equation*}
$$

where

$$
\begin{align*}
& F_{1}=G_{1}=Q_{0} \tag{5.8a}\\
& F_{n}=Q_{n-2} Q_{n-1}\left(1-1 / Q_{n-1}^{2}\right) \quad G_{n}=Q_{n-1} / Q_{n-2} \tag{5.8b}
\end{align*}
$$

From (5.7), $-W$ has formal power series expansions $\Sigma_{k=1}^{\infty} \mu_{k} \lambda^{2 k-1}$ and $\Sigma_{k=-\infty}^{0} \tilde{\mu}_{k} \lambda^{2 k-1}$ and they are related to the F_{n} and G_{n} through (3.14), (4.10) and (4.11). Thus we can prove a result corresponding to theorem 4.2 of the previous section.

Theorem 5.2. The discrete modified Kav equation (5.1), with the boundary condition $Q_{-1}(t) \equiv 1$ has the following solution for given $Q_{0}(t)$:

$$
\begin{equation*}
Q_{n}(t)=(-1)^{n+1} \frac{H_{n+1}^{(-n+1)}}{H_{n+1}^{(-n)}} \quad n=1,2, \ldots \tag{5.9}
\end{equation*}
$$

where the $H_{k}^{(j)}$ are the Hankel determinants given by (4.10) and (4.11), with μ_{k} and $\tilde{\mu}_{k}$ solutions of the linear equations:

$$
\begin{align*}
& \mu_{k+1}=\dot{\mu}_{k}-2 Q_{0} \mu_{k}-\mu_{k-1} \quad k=2,3,4, \ldots \\
& \mu_{1}=Q_{0} \quad \mu_{2}=\dot{Q}_{0}-2 Q_{0}^{2}+1 \tag{5.10}
\end{align*}
$$

and

$$
\begin{array}{lrr}
\tilde{\mu}_{k-1}=\tilde{\mu}_{k}-2 Q_{0} \tilde{\mu}_{k}-\tilde{\mu}_{k+1} & k=-2,-3,-4, \ldots \\
\tilde{\mu}_{0}=1 & \tilde{\mu}_{-1}=-Q_{0} & \tilde{\mu}_{-2}=-\dot{Q}_{0}+2 Q_{0}^{2}-1 \tag{5.11}
\end{array}
$$

The proof of this theorem follows that of theorem 4.2 and (5.10) and (5.11) follow from substituting the above power series for W in (5.6) and equating powers of λ. Again the above equations for μ_{k} and $\tilde{\mu}_{k}$ may be simplified.

Corollary 5.2.

$$
\begin{array}{ll}
\mu_{k}=-\sigma_{k+1} / \sigma_{1} & k=1,2, \ldots \\
\tilde{\mu}_{k}=\tilde{\sigma}_{k-1} / \tilde{\sigma}_{-1} & k=0,-1,-2, \ldots \tag{5.12b}
\end{array}
$$

are solutions of (5.10) and (5.11) when

$$
\begin{align*}
& \dot{\sigma}_{k+1}=\sigma_{k+2}+\sigma_{k} \quad k=1,2, \ldots \tag{5.13a}\\
& \dot{\sigma}_{1}=-2 Q_{0} \sigma_{1} \tag{5.13b}\\
& \sigma_{2}=-Q_{0} \sigma_{1} \tag{5.13c}
\end{align*}
$$

and

$$
\begin{align*}
& \dot{\sigma}_{k-1}=\tilde{\sigma}_{k-2}+\tilde{\sigma}_{k} \tag{5.14a}\\
& \dot{\sigma}_{-1}=-2 Q_{0} \tilde{\sigma}_{-1} \tag{5.14b}\\
& \tilde{\sigma}_{-2}=-Q_{0} \tilde{\sigma}_{-1} . \tag{5.14c}
\end{align*}
$$

This formulation may, as in the corresponding ones for the KVM and DNLS lattices, be used to generate a non-trivial solution of the DMKdV equations in terms of standard functions. It corresponds to taking

$$
\begin{equation*}
Q_{0}(t)=-I_{1}(2 t) / I_{0}(2 t) \quad Q_{-1}(t)=1 \tag{5.15}
\end{equation*}
$$

where $I_{k}(x)$ are modified Bessel functions. Using the recurrence relation,

$$
\begin{equation*}
I_{k-1}(x)+I_{k+1}(x)=2 \frac{\mathrm{~d} I_{k}(x)}{\mathrm{d} x} \tag{5.16}
\end{equation*}
$$

the system of equations (5.13) and (5.14) may be solved to give

$$
\begin{equation*}
\sigma_{k}(t)=I_{k-1}(2 t)=\tilde{\sigma}_{-k}(t) \quad k=1,2, \ldots \tag{5.17}
\end{equation*}
$$

The solutions for Q_{n} are then obtained in the usual way as quotients of determinants whose elements are those modified Bessel functions.

References

Ablowitz M J 1978 Stud. Appl. Math. 58 17-94
Ablowitz M J, Kaup D J, Newell A C and Segur H 1973 Phys. Rev. Lett. 31 125-7

- 1974 Stud. Appl. Math. 53 249-315

Ablowitz M J and Ladik J F 1976 J. Math. Phys. 17 1011-8
Bruschi M, Manakov S V, Ragnisco O and Levi D 1980 J. Math. Phys. 21 2749-53
Common A K and Roberts D E 1986 J. Phys. A: Math. Gen. 19 109-16
Jones W B and Thron W J 1980 Continued Fractions, Analytic Theory and Applications (Reading, MA: Addison-Wesley)
Kac M and Van Moerbeke P 1975 Adv. Math. Ser. 49 23-46
Toda M 1976 Prog. Theor. Phys. Suppl. 59 1-35
Wynn P 1963 Arch. Rat. Mech. Anal. 12 273-312
Yamazaki S 1987 J. Phys. A: Math. Gen. 20 6237-41

